WEB SERVICE SECURITY

Lan Vu – Shaila Abraham

Outline

- 1. Introduction
- 2. Web Service Security Methods
- 3. Implementation Technology
- 4. X.509 Model
- 5. Performance evaluation
- 6. Conclusion

Introduction

- Web Service is a bridge for data sharing and computing between businesses
- A technology enable cloud computing and gain benefits from cloud
- Web services are working in high risk environment
- Without Trust and Security... Web Services are Dead on Arrival

Web Service Security Methods

- Security is related to Authentication, Authorization, Auditing, Confidentiality...
- Our project is about Authentication in Web Service Security
- Authentication Methods:
 - Direct Authentication
 - Brokered Authentication
 - X.509 PKI
 - Kerberos
 - Security Token Service

Authentication with X.509 PKI

- Asymmetric Authentication with public key & private key
- Credentials = X.509 certificates
- Certificates are provided by Certificate Authority (CA)
 - Trusted CA: VeriSign, Thawte, and RSA
- Widely used, high cost

 Client Credentials

 1 Request
 2 Validate Certificate
 3 Verify Signature

 Page 1 Service

Authentication with Kerberos

- Symmetric Authentication using Kerberos protocol
- Authentication broker is called Key Distribution Center (KDC)
- Lower cost, lower security but better on performance
- Preferred to use for client within a domain

Authentication with Security Token Service

- Authentication broker is an Web service that validate credentials
- Benefits: flexible, enable different authentication protocols
- Performance is better then X.509 but lower than Kerberos

Implementation Technology

- WSE 3.0 (Web Service Enhancements 3.0): Security Product for Web Services.
 - Used to build secure web services easily.
 - Turnkey Security Scenarios (Username over Certificate, MutualCertifcate, Kerberos Certificate).
 - ASMX + WSE 3.0 builds a secure web service.
- WCF (Windows Communication Foundation): Programming model over SOA
 - Interoperable with Pre-WCF Technologies
 - Implements web service technologies specified by WS-* specification (WS-Security, WS-Trust, WS-SecureConversation, WS ReliableMessaging, WS-Coordination, WS-AtomicTransaction)

X.509 Model

Client initializes and sends a message with X.509 certificate info.

Service authenticates the client using the X.509 certificate and

signature.

Client Authentication

Server Authentication

X.509 Sample Code

```
<extensions>
     <extension name="authorization" type="Microsoft.Web.Services3.]</pre>
     <extension name="mutualCertificate10Security" type="Microsoft."</pre>
     <extension name="x509" type="Microsoft.Web.Services3.Design.X50"</pre>
     <extension name="requireActionHeader" type="Microsoft.Web.Serv</pre>
      <extension name="mutualCertificate11Security" type="Microsoft."</pre>
    </extensions>
    <policy name="x509Client">
     <mutualCertificate11Security establishSecurityContext="false" :</pre>
       <clientToken>
          <x509 storeLocation="LocalMachine" storeName="My" findValue
       </clientToken>
        <serviceToken>
          <x509 storeLocation="LocalMachine" storeName="TrustedPeople
        </serviceToken>
        ction>
          <request signatureOptions="IncludeAddressing, IncludeTimes"</pre>
          <response signatureOptions="IncludeAddressing, IncludeTime;</pre>
          <fault signatureOptions="IncludeAddressing, IncludeTimestar
       </protection>
     </mutualCertificate11Security>
      <requireActionHeader />
    </policy>
  </policies>
```

```
¬<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
    <extensions>
      <extension name="authorization" type="Microsoft.Web.Services3.D</pre>
      <extension name="mutualCertificate10Security" type="Microsoft."</pre>
      <extension name="x509" type="Microsoft.Web.Services3.Design.X50"</pre>
      <extension name="requireActionHeader" type="Microsoft.Web.Servi</pre>
      <extension name="mutualCertificate11Security" type="Microsoft."</pre>
    </extensions>
    <policy name="x509Service">
      <authorization>
        <allow user="CN=CSC5799Client" />
        <deny user="#" />
      </authorization>
      <mutualCertificate11Security establishSecurityContext="false" r</pre>
        <serviceToken>
          <x509 storeLocation="LocalMachine" storeName="My" findValue
        </serviceToken>
        ction>
          <request signatureOptions="IncludeAddressing, IncludeTimest</pre>
          <response signatureOptions="IncludeAddressing, IncludeTimes</pre>
          <fault signatureOptions="IncludeAddressing, IncludeTimestam"
        </protection>
      </mutualCertificate11Security>
      <requireActionHeader />
    </policy>
  </policies>
```

Client Policy File

Server Policy File

Performance Evaluation

Performance of Secure Web Service with WSE Technology

Performance Evaluation

Performance of WCF Vs ASMX Web Service Technology

Performance Evaluation

Improve performance of web service with parallel processing

Conclusion

- Implementation of Secure Web service using X.509, Kerberos, STS.
- Performance evaluation of Message level security for web services.
- Scalability issues arise when message size is huge on message level security.
- Comparison on WCF implementation over ASMX implementation proved that WCF gives more throughput than ASMX.